Composite Strength Workshop 07-03-2022

In-plane shear testing with tubular specimens

Marino Quaresimin, Paolo Andrea Carraro Department of Management and Engineering, University of Padova

marino.quaresimin@unipd.it, paoloandrea.carraro@unipd.it

Tube configuration

How to obtain a pure shear stress (σ_6) on a tubular specimen?

Tube under torsion with the UD fibres oriented either at 0° or at 90° with respect to the tube's axis (x-axis)

0° → serious issues in manufacturing (large split formation during the demoulding phase)

90°

Combining torsion and tension loadings, possibility to obtain bi-axial stress states (σ_6 and σ_2) or (σ_6 and σ_1)

$$\lambda_1 = \frac{\sigma_2}{\sigma_1}, \ \lambda_2 = \frac{\sigma_6}{\sigma_1}, \ \lambda_{12} = \frac{\sigma_6}{\sigma_2}$$

In plane shear testing with tubular specimens

M₊

Χ

M₊

Stress state

Quaresimin M., Carraro P.A., On the investigation of the biaxial fatigue behaviour of unidirectional composites, Composites Part B, 54 (2013) pp. 200–208.

In-plane shear testing with tubular specimens – M.Quaresimin, P.A.Carraro

3/14 FATIGUE

Tube manufacturing

Mandrel wrapping + heat shrinking tape + autoclave moulding

Typically, 1 meter long tubes can be manufactured and then cut into specimens of suitable length

Tabbing

Pre-preg glass epoxy woven tabs rolled around the tube ends and cured in an oven

A resin fillet helps avoiding tab failures, particularly under compressive loads

In-plane shear testing with tubular specimens – M.Quaresimin, P.A.Carraro

5/14

Possible surface defects due to the heat shrinking tape

Tube machining: NOT OF HELP!

Clamping

The correct clamping of tubular specimen requires cylindrical grips, which at the end control the tube diameter in the tab zone and the accuracy of the manufacturing required

Clamping

For large tubes, a dedicated clamping system is required, keyless friction locking devices can be used successfully

In-plane shear testing with tubular specimens – M.Quaresimin, P.A.Carraro

9/14

<u>dtg</u>

Internal light for damage analysis (G/E only)

Multiaxial proportional tests on 90° UD G/E tubes

Conclusions

Advantages of tubular specimens:

- No free edges
- Pure shear stress state under torsion (direct assessment of the shear strength, modulus and constitutive law)
- No stress concentrations and very limited stress gradients
- Possibility of combining shear and transverse stress using the same specimen configuration

15/14

Drawbacks:

- Not easy to manufacture
- Require a (tension)/torsion machine

3rd International Summer School on Fatigue and Damage Mechanics of Composite Materials 4 - 8 July 2022

www.gest.unipd.it/damageschool2022/

Composite Strength Workshop 07-03-2022

In-plane shear testing with tubular specimens

Marino Quaresimin, Paolo Andrea Carraro Department of Management and Engineering, University of Padova

